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* Geospatial analytics is a form of computational
analysis that utilizes geographic information,
spatial data, location data, and increasingly,
high-resolution imagery, computer vision, and

- other forms of modeling and Al to extract

GeOSpatlal structured data that can be used for specific

Analytics applications and industries.

Defined e Geospatial analytics is used to add timing and
location to traditional types of data and to build
data visualizations. These visualizations can
include maps, graphs, statistics and cartograms
that show historical changes and current shifts.

(IBM) /
P 4




Geographic Data

Geographic Data:

Geographic(al) means 'pertaining to geography (the study of
the surface of the earth)’

'referring to or characteristic of a certain locality, especially
in reference to its location in relation to other places'
(Macquarie Dictionary).

e Geographic data uses different feature types (raster,
points, lines, or polygons) to uniquely identify the location
and/or the geographical boundaries of spatial (location
based) entities that exist on the earth surface.

* Geographic data are a significant subset of spatial data



Spatial Data

* The word spatial originated from Latin 'spatium’, which
means space. Spatial means 'pertaining to space' or 'having
to do with space, relating to space and the position, size,
shape, etc.' (Oxford Dictionary),

 refers to features or phenomena distributed in three-
dimensional space (any space, not only the Earth's surface)
and, thus, having physical, measurable dimensions.

* In GIS, 'spatial' is also referred to as 'based on location on

’

map’.

* The terms geographic, spatial, and geospatial are often
used interchangeably, although technically incorrect.




Spatial Data

e Attribute domains are rules that describe the available
values of a field type.

* They are used to constrain the values allowed in any
attribute for a table or feature class.

* They provide a method for enforcing data integrity by
limiting what can be placed on a field to a valid list or
range of choices.

* Three types of spatial data are distinguished through the
characteristics of the domain, namely, areal (or lattice) data,
geostatistical data, and point patterns




Spatial Data
(continued)

 Areal data

* Areal data usually arise when
the number of events
corresponding to some
variable of interest are
aggregated in areas such as
neighborhoods or counties.
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FIGURE 1.1: Example of areal data. Number of sudden infant deaths in counties of North Carolina,
USA, in 1974.
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FIGURE 1.2: Example of areal data. Household income in $1000 USD in neighborhoods in
Columbus, Ohio, in 1980.



Spatial Data (continued)

* Areal data
* Areal data usually arise when the number of events
corresponding to some variable of interest are
aggregated in areas such as neighborhoods or
counties.

e Geostatistical data

* The use of data observed at known spatial
locations to predict the values of the variable of
interest at unsampled locations.

* For example, we can use air pollution
measurements at a number of monitoring stations
to predict air pollution at other locations taking into
account spatial autocorrelation and other factors
that are known to predict the outcome of interest
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FIGURE 1.4: Example of geostatistical data. Topsoil lead concentrations at locations sampled in a
flood plain of the river Meuse, The Netherlands.
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FIGURE 1.5: Example of geostatistical data. Price per square meter of a set of apartments in

Athens, Greece, in 2017.



Spatial Data (continued)

 Areal data

* Areal data usually arise when the number of events
corresponding to some variable of interest are
aggregated in areas such as neighborhoods or

counties -
* Geostatistical data i
* The use of data observed at known spatial O "
locations to predict the values of the variable of Q B
interest at unsampled locations . a
* For example, we can use air pollution measurements

at a number of monitoring stations to predict air ] -
pollution at other locations taking into account spatial s
- B

autocorrelation and other factors that are known to
predict the outcome of interest

* Point patterns

* In point patterns, an observation index set gives the
locations of random events of the spatial point
pattern indicating occurrence of the event
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Spatial Data (Continued)

e Spatio-temporal data
* Spatio-temporal data arise when information is both spatially and temporally
referenced.

 Temporal is data that represents an observation or pattern over time
* These past patterns are used to predict future events
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FIGURE 1.9: Example of spatio-temporal data. Population of the counties of Ohio, USA, from 1968
to 1988.




Spatial Data (Continued)

e Spatio-temporal data

e Spatio-temporal data arise when
information is both spatially and
temporally referenced.

* Temporal is data that represents an
observation or pattern over time

* These past patterns are used to predict
future events

 Spatial functional data

e Spatial functional data arise when the
three types of spatial data (areal,
geostatistical, and point patterns) are
combined with random functions.
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measured at 35 Canadian weather stations.



Geospatial

* Consisting of, derived from, or relating to
data that is directly linked to specific
geographical locations (Merriam-Webster)

* Geospatial datais used to develop
information about features, objects, and
classes on Earth's surface and/or near
Earth's surface.

* Many organizations, including agencies of
the United States consider Geospatial and
Spatial as equivalent terms.




Cartogram: A cartogram is a transformation of a map that uses
some variable instead of land area to expand or contract the area of
the original polygons based on an attribute value.

Cartograms are often used for displaying population data.

—— S

Rio de Jangiro

Santiag ABLancs Alres

Figure 2: Grid-Based World Population Cartogram (2000)

© Copyright 2009 SASI Group (University of Sheffield)



Old School Cartogram

Literary Digest, April 23, 1921.

Relative Size of Each of the United States If Based on Electrical Energy Sold for
Light and Power in 1921.



Computer vision

« Computer vision applications use input
from sensing devices, artificial intelligence,
machine learning, and deep learning to
replicate the way the human vision system
works.

 Computer vision applications run on
algorithms that are trained on massive
amounts of visual data or images in the
cloud.

* They recognize patterns in this visual
data and use those patterns to
determine the content of other images.
(Microsoft Azure)

* Aform of computer vision would be the
change technology that is used in many
offices today.




Deep learning is a subset of
machine learning that uses
several layers of algorithms in
the form of neural networks.

Machine learning is a branch
of artificial intelligence in
which structured data is
processed with an algorithm
to solve a problem.

Artificial
Intelligence

Input data is analyzed through
different layers of the network,
with each layer defining
specific features and patterns
in the data.

Machine
Learning

Traditional structured data
requires a person to label the
data, such as a pictures of cats
and dogs, so that specific
features for each animal type
can be understood within the
algorithm and used to identify
these animals in other
pictures.

Deep
Learning

For example, if you want to identify features such as buildings and roads, the
deep learning model can be trained with images of different buildings and roads,
processing the images through layers within the neural network, and then finding
the identifiers required to classify a building or road.
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Refining Neighborhoods
with GIS & Statistics

In 2019, while working with an island neighborhood,
the following statistical output were observed:

Median Ratio: 88%
PRD: 129

Mean Ratio: 72%
Weighted Mean: 55.81%

Staff wanted to put a positive multiplier on the entire
neighborhood to correct the underassessment.
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Refining Neighborhoods
with GIS & Statistics

Obviously my first concern was a PRD of 129!

We created a map displaying the quartile of all
sales by sales ratio with the sale price displayed

Quickly it was found that the first quartile was
underassessed and the fourth quartile was over
assessed.

We also noted that the culprit causing most of
the trouble was one of nine mansions on the
iIsland that was significantly underassessed and
it also greatly out valued the typical nice but
less expensive condominiums

The mansions were removed from the dataset
and added to the adjacent island that is made
up primarily of mansions




Refining Neighborhoods with
— IS & Statistics

'NHNN!' * From the initial quartile study, we found that the
' assessments not meeting IAAO Standards
required a more refined analysis and so we moved
from quartiles to percentiles.

* As will be seen on the following screen, the 30t
percentile captured those properties that are
below the 90%.

* The group of properties below the 30t percentile
had an COD of 5.6471

* The median ratio for this group was 0.85

* By dividing the desired ratio of 100% by the median
ratio of 0.85, a factor of 1.176471 is established.
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Refining
Neighborhoods with
GIS & Statistics

As will be seen on the next slide, those
properties above the 110% level of
assessment existed above the 64t
percentile

This group had a very low COD of 1.902748, Eae

showing that the median was an excellent
representative of the population

The ratios above the 64" percentile had a
median of 1.295

These properties could easily be lowered to &

NS

the 100% level of assessment by utilizing a
factor of 0.772201

s
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Refining Neighborhoods
with GIS & Statistics

=  Upon further investigation, it was

found that those properties that
were being undervalued were
- smaller waterfront townhomes.

* After this process, all of the
properties in this area were adjusted
accordingly
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Refining
Neighborhoods with
GIS & Statistics

* The properties that were over-
assessed were predominantly those on
the east shore of the Island that had
views of the commercial harbor

* Afteris process, all of the properties in
this area were adjusted accordingly



Refining Neighborhoods
with GIS & Statistics

After adjusting the neighborhood for the
several conditions, the 2024 descriptive
statistics for this neighborhood are:

Median: .9939
Mean: .9897
COV: 15.76
COD: 11.71

PRD: .9904




Refining Land Values with Geospatial Data

* On an adjacent Island, the land values were not keeping pace with
the sale price of properties on the water or canals.

* We utilized water depth data from the Army Corp of Engineers,
along with sonar readings taken by our office

* What we created was a map relevant to access to deep water

* Significant premiums were being paid for those properties with
open blue water and there was a steady decrease in values at that

access diminished

* Prior to this research, the assumption was based upon whether or
not access to blue water was impeded by a bridge or not



Refining Land Values
with Geospatial Data

* As can be seen, the blue lots have
direct deep water access.

* Low tide depth of at least six (6) feet

* The yellow lots are considered to be
canal lots
* Low tide depth below six (6) feet

* These lots gradually decrease in value as
the water depth of low tide diminishes

* Once the low water tide depth reaches
below two (2) feet, the value is constant

* The center canalis impacted by both a
bridge crossing and diminishing depths




Refining Models
with Geospatial
Data

* Over 105,000 properties of Hillsborough County are in an A or B flood
zone.

* After Hurricane Michael, FEMA readjusted their Hurricane flood maps
 What was learned from Michael was the idea of “stacking”
* Stacking occurs when the water can’t dissipate and simply stacks up
higher and higher

* With these new maps and increasing insurance rates, we utilize lidar
maps to find the base elevation of each home, to utilize as a
characteristic in our regression models



Refining
Models with
Geospatial
Data

Lidar Elevation Model Map
Tampa, FL
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Refining Models
with Geospatial
Data

* Lidar Elevation Model Map
* Tampa Heights, FL
* Riverside Heights, FL



Hillsborough
Public Facing GIS

https://www.arcgis.com/apps/dashboar
ds/dfa0789a1f264acb884745d02903611
7



https://www.arcgis.com/apps/dashboards/dfa0789a1f264acb884745d029036117
https://www.arcgis.com/apps/dashboards/dfa0789a1f264acb884745d029036117
https://www.arcgis.com/apps/dashboards/dfa0789a1f264acb884745d029036117

Patrick Alesandrini, CAE, MAI,
RES, SRA, CFE
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