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Geospatial 
Analytics 
Defined

• Geospatial analytics is a form of computational 
analysis that utilizes geographic information, 
spatial data, location data, and increasingly, 
high-resolution imagery, computer vision, and 
other forms of modeling and AI to extract 
structured data that can be used for specific 
applications and industries.

• Geospatial analytics is used to add timing and 
location to traditional types of data and to build 
data visualizations. These visualizations can 
include maps, graphs, statistics and cartograms 
that show historical changes and current shifts. 
(IBM)



Geographic Data
Geographic Data:
Geographic(al) means 'pertaining to geography (the study of 
the surface of the earth)’

'referring to or characteristic of a certain locality, especially 
in reference to its location in relation to other places' 
(Macquarie Dictionary).

• Geographic data uses different feature types (raster, 
points, lines, or polygons) to uniquely identify the location 
and/or the geographical boundaries of spatial (location 
based) entities that exist on the earth surface.

• Geographic data are a significant subset of spatial data



Spatial Data

• The word spatial originated from Latin 'spatium', which 
means space. Spatial means 'pertaining to space' or 'having 
to do with space, relating to space and the position, size, 
shape, etc.' (Oxford Dictionary),

• refers to features or phenomena distributed in three-
dimensional space (any space, not only the Earth's surface) 
and, thus, having physical, measurable dimensions.

• In GIS, 'spatial' is also referred to as 'based on location on 
map’.

• The terms geographic, spatial, and geospatial are often 
used interchangeably, although technically incorrect.



Spatial Data

• Attribute domains are rules that describe the available 
values of a field type.

• They are used to constrain the values allowed in any 
attribute for a table or feature class.

• They provide a method for enforcing data integrity by 
limiting what can be placed on a field to a valid list or 
range of choices.

• Three types of spatial data are distinguished through the 
characteristics of the domain, namely, areal (or lattice) data, 
geostatistical data, and point patterns



Spatial Data 
(continued)

• Areal data
• Areal data usually arise when 

the number of events 
corresponding to some 
variable of interest are 
aggregated in areas such as 
neighborhoods or counties.







Spatial Data (continued)

• Areal data
• Areal data usually arise when the number of events 

corresponding to some variable of interest are 
aggregated in areas such as neighborhoods or 
counties.

• Geostatistical data
• The use of data observed at known spatial 

locations to predict the values of the variable of 
interest at unsampled locations.

• For example, we can use air pollution 
measurements at a number of monitoring stations 
to predict air pollution at other locations taking into 
account spatial autocorrelation and other factors 
that are known to predict the outcome of interest







Spatial Data (continued)

• Areal data
• Areal data usually arise when the number of events 

corresponding to some variable of interest are 
aggregated in areas such as neighborhoods or 
counties

• Geostatistical data

• The use of data observed at known spatial 
locations to predict the values of the variable of 
interest at unsampled locations

• For example, we can use air pollution measurements 
at a number of monitoring stations to predict air 
pollution at other locations taking into account spatial 
autocorrelation and other factors that are known to 
predict the outcome of interest

• Point patterns

• In point patterns, an observation index set gives the 
locations of random events of the spatial point 
pattern indicating occurrence of the event





Spatial Data (Continued)

• Spatio-temporal data
• Spatio-temporal data arise when information is both spatially and temporally 

referenced.
• Temporal is data that represents an observation or pattern over time

• These past patterns are used to predict future events





Spatial Data (Continued)

• Spatio-temporal data

• Spatio-temporal data arise when 
information is both spatially and 
temporally referenced.

• Temporal is data that represents an 
observation or pattern over time

• These past patterns are used to predict 
future events

• Spatial functional data

• Spatial functional data arise when the 
three types of spatial data (areal, 
geostatistical, and point patterns) are 
combined with random functions.



Geostatistical
Data





Geospatial

• Consisting of, derived from, or relating to 
data that is directly linked to specific 
geographical locations (Merriam-Webster)

• Geospatial data is used to develop 
information about features, objects, and 
classes on Earth's surface and/or near 
Earth's surface.

• Many organizations, including agencies of 
the United States consider Geospatial and 
Spatial as equivalent terms.



Cartogram:  A cartogram is a transformation of a map that uses 
some variable instead of land area to expand or contract the area of 
the original polygons based on an attribute value.  
Cartograms are often used for displaying population data. 



Old School Cartogram



Computer vision 
• Computer vision applications use input 

from sensing devices, artificial intelligence, 
machine learning, and deep learning to 
replicate the way the human vision system 
works. 
• Computer vision applications run on 

algorithms that are trained on massive 
amounts of visual data or images in the 
cloud. 

• They recognize patterns in this visual 
data and use those patterns to 
determine the content of other images. 
(Microsoft Azure)

• A form of computer vision would be the 
change technology that is used in many 
offices today.



Machine learning is a branch 
of artificial intelligence in 
which structured data is 
processed with an algorithm 
to solve a problem. 

Traditional structured data 
requires a person to label the 
data, such as a pictures of cats 
and dogs, so that specific 
features for each animal type 
can be understood within the 
algorithm and used to identify 
these animals in other 
pictures.

Deep learning is a subset of 
machine learning that uses 
several layers of algorithms in 
the form of neural networks. 

Input data is analyzed through 
different layers of the network, 
with each layer defining 
specific features and patterns 
in the data.

For example, if you want to identify features such as buildings and roads, the 
deep learning model can be trained with images of different buildings and roads, 
processing the images through layers within the neural network, and then finding 
the identifiers required to classify a building or road.



Change Technology - PushPin





Refining Neighborhoods 
with GIS & Statistics

In 2019, while working with an island neighborhood, 
the following statistical output were observed:

 Median Ratio:  88%

 PRD: 129

 Mean Ratio: 72%

 Weighted Mean: 55.81%

Staff wanted to put a positive multiplier on the entire 
neighborhood to correct the underassessment.





Refining Neighborhoods 
with GIS & Statistics

• Obviously my first concern was a PRD of 129!  
• We created a map displaying the quartile of all 

sales by sales ratio with the sale price displayed
• Quickly it was found that the first quartile was 

underassessed and the fourth quartile was over 
assessed.

• We also noted that the culprit causing most of 
the trouble was one of nine mansions on the 
island that was significantly underassessed and 
it also greatly out valued the typical nice but 
less expensive condominiums 

• The mansions were removed from the dataset 
and added to the adjacent island that is made 
up primarily of mansions



Refining Neighborhoods with 
GIS & Statistics

• From the initial quartile study, we found that the 
assessments not meeting IAAO Standards 
required a more refined analysis and so we moved 
from quartiles to percentiles.

• As will be seen on the following screen, the 30th 
percentile captured those properties that are 
below the 90%.  

• The group of properties below the 30th percentile 
had an COD of 5.6471

• The median ratio for this group was 0.85
• By dividing the desired ratio of 100% by the median 

ratio of 0.85, a factor of 1.176471 is established.  





Refining 
Neighborhoods with 
GIS & Statistics

• As will be seen on the next slide, those 
properties above the 110% level of 
assessment existed above the 64th 
percentile

• This group had a very low COD of 1.902748, 
showing that the median was an excellent 
representative of the population

• The ratios above the 64th percentile had a 
median of 1.295

• These properties could easily be lowered to 
the 100% level of assessment by utilizing a 
factor of 0.772201





Refining Neighborhoods 
with GIS & Statistics

• Upon further investigation, it was 
found that those properties that 
were being undervalued were 
smaller waterfront townhomes.

• After this process, all of the 
properties in this area were adjusted 
accordingly



Refining 
Neighborhoods with 
GIS & Statistics

• The properties that were over-
assessed were predominantly those on 
the east shore of the Island that had 
views of the commercial harbor

• After is process, all of the properties in 
this area were adjusted accordingly



Refining Neighborhoods 
with GIS & Statistics

After adjusting the neighborhood for the 
several conditions, the 2024 descriptive 
statistics for this neighborhood are:

 Median: .9939
 Mean:  .9897
 COV:  15.76
 COD:  11.71
 PRD:  .9904



Refining Land Values with Geospatial Data
• On an adjacent Island, the land values were not keeping pace with 

the sale price of properties on the water or canals.  
• We utilized water depth data from the Army Corp of Engineers, 

along with sonar readings taken by our office
• What we created was a map relevant to access to deep water
• Significant premiums were being paid for those properties with 

open blue water and there was a steady decrease in values at that 
access diminished

• Prior to this research, the assumption was based upon whether or 
not access to blue water was impeded by a bridge or not



Refining Land Values 
with Geospatial Data
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Bayfront 07--

Canalfront 06--

Davis Islands

• As can be seen, the blue lots have 
direct deep water access.  
• Low tide depth of at least six (6) feet

• The yellow lots are considered to be 
canal lots
• Low tide depth below six (6) feet
• These lots gradually decrease in value as 

the water depth of low tide diminishes
• Once the low water tide depth reaches 

below two (2) feet, the value is constant
• The center canal is impacted by both a 

bridge crossing and diminishing depths



Refining Models 
with Geospatial 
Data

• Over 105,000 properties of Hillsborough County are in an A or B flood 
zone.  

• After Hurricane Michael, FEMA readjusted their Hurricane flood maps
• What was learned from Michael was the idea of “stacking”
• Stacking occurs when the water can’t dissipate and simply stacks up 

higher and higher

• With these new maps and increasing insurance rates, we utilize lidar 
maps to find the base elevation of each home, to utilize as a 
characteristic in our regression models



Refining 
Models with 
Geospatial 
Data

Lidar Elevation Model Map
Tampa, FL



Refining Models 
with Geospatial 
Data
• Lidar Elevation Model Map
• Tampa Heights, FL
• Riverside Heights, FL



Hillsborough 
Public Facing GIS
https://www.arcgis.com/apps/dashboar
ds/dfa0789a1f264acb884745d02903611

7

https://www.arcgis.com/apps/dashboards/dfa0789a1f264acb884745d029036117
https://www.arcgis.com/apps/dashboards/dfa0789a1f264acb884745d029036117
https://www.arcgis.com/apps/dashboards/dfa0789a1f264acb884745d029036117


Thank you drini57@outlook.com

Patrick Alesandrini, CAE, MAI, 
RES, SRA, CFE

drini57@outlook.com

+1 309-453-6684

mailto:drini57@outlook.com


Spatial Analysis of Neighborhoods Digital Layers

• Layers are created to represent features or themes.
• Examples are parcel layers, tax  district layers, neighborhood 

layers.

Spatial Analysis on story height.



Spatial Analysis of Grade



Spatial Analysis of Year Built



Spatial Analysis of Bedrooms



Spatial Analysis of Exterior Codes
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